Automatic brain tissue segmentation in MR images using Random Forests and Conditional Random Fields.
نویسندگان
چکیده
BACKGROUND The segmentation of brain tissue into cerebrospinal fluid, gray matter, and white matter in magnetic resonance imaging scans is an important procedure to extract regions of interest for quantitative analysis and disease assessment. Manual segmentation requires skilled experts, being a laborious and time-consuming task; therefore, reliable and robust automatic segmentation methods are necessary. NEW METHOD We propose a segmentation framework based on a Conditional Random Field for brain tissue segmentation, with a Random Forest encoding the likelihood function. The features include intensities, gradients, probability maps, and locations. Additionally, skull stripping is critical for achieving an accurate segmentation; thus, after extracting the brain we propose to refine its boundary during segmentation. RESULTS The proposed framework was evaluated on the MR Brain Image Segmentation Challenge and the Internet Brain Segmentation Repository databases. The segmentations of brain tissues obtained with the proposed algorithm were competitive both in normal and diseased subjects. The skull stripping refinement significantly improved the results, when comparing against no refinement. COMPARISON WITH EXISTING METHODS In the MR Brain Image Segmentation Challenge database, the results were competitive when comparing with top methods. In the Internet Brain Segmentation Repository database, the proposed approach outperformed other well-established algorithms. CONCLUSIONS The combination of a Random Forest and Conditional Random Field for brain tissue segmentation performed well for normal and diseased subjects. Additionally, refinement of the skull stripping at segmentation time is feasible in learning-based methods and significantly improves the segmentation of cerebrospinal fluid and intracranial volume.
منابع مشابه
Quantitative Comparison of SPM, FSL, and Brainsuite for Brain MR Image Segmentation
Background: Accurate brain tissue segmentation from magnetic resonance (MR) images is an important step in analysis of cerebral images. There are software packages which are used for brain segmentation. These packages usually contain a set of skull stripping, intensity non-uniformity (bias) correction and segmentation routines. Thus, assessment of the quality of the segmented gray matter (GM), ...
متن کاملAutomatic Brain Tissue Segmentation of Multi-sequence MR images using Random Decision Forests MICCAI Grand Challenge: MR Brain Image Segmentation 2013
This work is integrated in the MICCAI Grand Challenge: MR Brain Image Segmentation 2013. It aims for the automatic segmentation of brain into Cerebrospinal fluid (CSF), Gray matter (GM) and White matter (WM). The provided dataset contains patients with white matter lesions, which makes the segmentation task more challenging. The proposed algorithm uses multisequence MR images to extract meaning...
متن کاملMarkov Random Field Segmentation Of Brain MR Images - Medical Imaging, IEEE Transactions on
We describe a fully-automatic three-dimensional (3-D)-segmentation technique for brain magnetic resonance (MR) images. By means of Markov random fields (MRF’s) the segmentation algorithm captures three features that are of special importance for MR images, i.e., nonparametric distributions of tissue intensities, neighborhood correlations, and signal inhomogeneities. Detailed simulations and rea...
متن کاملMulti-vector Segmentation of Breast MR Images via Hidden Markov Random Fields
In this paper we apply multi-vector Hidden Markov Random Fields to tissue segmentation of Magnetic Resonance (MR) breast images. Our proposed method performs segmentation using a stack of 3 MR breast slices 1mm apart. The approach takes into account neighborhood voxel information rather than merely neighborhood pixel information and the results are anatomically more plausible in comparison with...
متن کاملComparison of state-of-the-art atlas-based bone segmentation approaches from brain MR images for MR-only radiation planning and PET/MR attenuation correction
Introduction: Magnetic Resonance (MR) imaging has emerged as a valuable tool in radiation treatment (RT) planning as well as Positron Emission Tomography (PET) imaging owing to its superior soft-tissue contrast. Due to the fact that there is no direct transformation from voxel intensity in MR images into electron density, itchr('39')s crucial to generate a pseudo-CT (Computed Tomography) image ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neuroscience methods
دوره 270 شماره
صفحات -
تاریخ انتشار 2016